205 research outputs found

    EGF receptor trafficking: consequences for signaling and cancer

    Get PDF
    The ligand-stimulated epidermal growth factor receptor (EGFR) has been extensively studied in the analysis of molecular mechanisms regulating endocytic traffic and the role of that traffic in signal transduction. Although such studies have largely focused on mitogenic signaling and dysregulated traffic in tumorigenesis, there is growing interest in the potential role of EGFR traffic in cell survival and the consequent response to cancer therapy. Here we review recent advances in our understanding of molecular mechanisms regulating ligand-stimulated EGFR activation, internalization, and post-endocytic sorting. The role of EGFR overexpression/mutation and new modulators of EGFR traffic in cancer and the response to cancer therapeutics are also discussed. Finally, we speculate on the relationship between EGFR traffic and cell survival

    Membrane trafficking: Retrofusion as an escape route out of the endosome

    Get PDF
    Intraluminal vesicles accumulate within the endosomal lumen before lysosomal delivery or extracellular release. A new study reports the development of an elegant assay showing that these vesicles can escape from the endosomal lumen by ‘back-fusion’ or ‘retrofusion’ with the endosomal limiting membrane

    Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles

    Get PDF
    Multivesicular endosomes/bodies (MVBs) contain intraluminal vesicles (ILVs) that bud away from the cytoplasm. Multiple mechanisms of ILV formation have been identified, but the relationship between different populations of ILVs and MVBs remains unclear. Here we show in HeLa cells that different ILV subpopulations can be distinguished by size. EGF stimulation promotes the formation of large ESCRT-dependent ILVs, while depletion of the ESCRT-0 component, Hrs, promotes the formation of a uniformly sized population of small ILVs, the formation of which requires CD63. CD63 has previously been implicated in ESCRT-independent sorting of PMEL in MVBs and transfected PMEL is present on the small ILVs that form on Hrs depletion. Upregulation of CD63-dependent ILV formation by Hrs depletion indicates that Hrs and CD63 regulate competing machineries required for the generation of distinct ILV subpopulations. Taken together our results indicate that ILV size is influenced by their cargo and mechanism of formation and suggest a competitive relationship between ESCRT-dependent and -independent mechanisms of ILV formation within single MVBs

    Cholesterol Overload: Contact Sites to the Rescue!

    Get PDF
    Delivery of low-density lipoprotein-derived cholesterol to the endoplasmic reticulum (ER) is essential for cholesterol homeostasis, yet the mechanism of this transport has largely remained elusive. Two recent reports shed some light on this process, uncovering a role for Niemann Pick type-C1 protein (NPC1) in the formation of membrane contact sites (MCS) between late endosomes (LE)/lysosomes (Lys) and the ER. Both studies identified a loss of MCS in cells lacking functional NPC1, where cholesterol accumulates in late endocytic organelles. Remarkably, and taking different approaches, both studies have made a striking observation that expansion of LE/Lys-ER MCS can rescue the cholesterol accumulation phenotype in NPC1 mutant or deficient cells. In both cases, the cholesterol was shown to be transported to the ER, demonstrating the importance of ER-LE/Lys contact sites in the direct transport of low-density lipoprotein-derived cholesterol to the ER

    An Endosomal NAADP-Sensitive Two-Pore Ca(2+) Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling.

    Get PDF
    Membrane contact sites are regions of close apposition between organelles that facilitate information transfer. Here, we reveal an essential role for Ca(2+) derived from the endo-lysosomal system in maintaining contact between endosomes and the endoplasmic reticulum (ER). Antagonizing action of the Ca(2+)-mobilizing messenger NAADP, inhibiting its target endo-lysosomal ion channel, TPC1, and buffering local Ca(2+) fluxes all clustered and enlarged late endosomes/lysosomes. We show that TPC1 localizes to ER-endosome contact sites and is required for their formation. Reducing NAADP-dependent contacts delayed EGF receptor de-phosphorylation consistent with close apposition of endocytosed receptors with the ER-localized phosphatase PTP1B. In accord, downstream MAP kinase activation and mobilization of ER Ca(2+) stores by EGF were exaggerated upon NAADP blockade. Membrane contact sites between endosomes and the ER thus emerge as Ca(2+)-dependent hubs for signaling

    Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport

    Get PDF
    Membrane contact sites between the ER and multivesicular endosomes/bodies (MVBs) play important roles in endosome positioning and fission and in neurite outgrowth. ER-MVB contacts additionally function in epidermal growth factor receptor (EGFR) tyrosine kinase downregulation by providing sites where the ER-localized phosphatase, PTP1B, interacts with endocytosed EGFR before the receptor is sorted onto intraluminal vesicles (ILVs). Here we show that these contacts are tethered by annexin A1 and its Ca2+-dependent ligand, S100A11, and form a subpopulation of differentially regulated contact sites between the ER and endocytic organelles. Annexin A1-regulated contacts function in the transfer of ER-derived cholesterol to the MVB when low-density lipoprotein-cholesterol in endosomes is low. This sterol traffic depends on interaction between ER-localized VAP and endosomal oxysterol-binding protein ORP1L, and is required for the formation of ILVs within the MVB and thus for the spatial regulation of EGFR signaling

    Roles for ER : endosome membrane contact sites in ligand-stimulated intraluminal vesicle formation

    Get PDF
    Multivesicular endosomes/bodies (MVBs) sort membrane proteins between recycling and degradative pathways. Segregation of membrane proteins onto intraluminal vesicles (ILVs) of MVBs removes them from the recycling pathway and facilitates their degradation following fusion of MVBs with lysosomes. Sorting of many cargos onto ILVs depends on the ESCRT (Endosomal Sorting Complex Required for Transport) machinery, although ESCRT-independent mechanisms also exist. In mammalian cells, efficient sorting of ligand-stimulated epidermal growth factor receptors onto ILVs also depends on the tyrosine phosphatase, PTP1B, an ER-localised enzyme that interacts with endosomal targets at membrane contacts between MVBs and the ER. This review focuses on the potential roles played by ER : MVB membrane contact sites in regulating ESCRT-dependent ILV formation

    NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress

    Get PDF
    Transport of dietary cholesterol from endocytic organelles to the endoplasmic reticulum (ER) is essential for cholesterol homoeostasis, but the mechanism and regulation of this transport remains poorly defined. Membrane contact sites (MCS), microdomains of close membrane apposition, are gaining attention as important platforms for non-vesicular, inter-organellar communication. Here we investigate the impact of ER-endocytic organelle MCS on cholesterol transport. We report a role for Niemann-Pick type C protein 1 (NPC1) in tethering ER-endocytic organelle MCS where it interacts with the ER-localised sterol transport protein Gramd1b to regulate cholesterol egress. We show that artificially tethering MCS rescues the cholesterol accumulation that characterises NPC1-deficient cells, consistent with direct lysosome to ER cholesterol transport across MCS. Finally, we identify an expanded population of lysosome-mitochondria MCS in cells depleted of NPC1 or Gramd1b that is dependent on the late endosomal sterol-binding protein STARD3, likely underlying the mitochondrial cholesterol accumulation in NPC1-deficient cells

    Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition

    Get PDF
    Two-pore channels (TPCs) are endo-lysosomal ion channels implicated in Ca2+ signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease however is unclear. Here we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators (Rab7, NAADP, PI(3,5)P2) and buffering local Ca2+ increases. NAADP-evoked Ca2+ signals were exaggerated in diseased cells. TPC2 is thus a potential druggable target within a pathogenic LRRK2 cascade that disrupts Ca2+-dependent trafficking in Parkinson disease

    Strategic options development and analysis

    Get PDF
    Strategic Options Development and Analysis (SODA) enables a group or individual to construct a graphical representation (map) or a problematic situation, and thus explore options and their ramifications with respect to a complex system of goals or objectives. In addition the approach aims to help groups arrive at a negotiated agreement about how to act to resolve the situation. It is based upon the use of causal mapping – a formally constructed means-ends network. Because the map has been constructed using the natural language of the problem owners it becomes a model of the situation that is ‘owned’ by those who define the problem. The use of formalities for the construction of the model makes it amenable to a range of analyses encouraging reflection and a deeper understanding. These analyses can be used in a ‘rough and ready’ manner by visual inspection or through the use of specialist causal mapping software. Each of the analyses helps a group or individual discover important features of the problem situation. And these features facilitate agreeing a good solution. The SODA process is aimed at helping a group learn about the situation they face before they reach agreements. Most significantly the exploration through the causal map leads to a higher probability of more creative solutions and promotes solutions that are more likely to be implemented because the problem construction process is more likely to include richer social dimensions about the blockages to action and organizational change. The basic theories that inform SODA derive from cognitive psychology and social negotiation, where the model acts as a continuously changing representation of the problematic situation (a transitional object) – changing as the views of a person or group shift through learning and exploration. This chapter jointly written by two leading practitioner academics and the original developers of SODA, Colin Eden and Fran Ackermann, describe the SODA approach as it is applied in practice
    • …
    corecore